«ФОСФОРНА» ЕКОНОМІКА – ОГЛЯД

  • Йорг Кьон Інститут продуктових ліній на біологічній основі Академії Бекманна
  • Дaнa Зiммeр Університет Ростоку
  • Пeteр Лeiнвeбeр Університет Ростоку

Анотація

Майже для всіх процесів життєдіяльності фосфор має важливе значення. ДНК, РНК, жирні кислоти, зуби, кістки, мітохондріальна енергетична система перетворення АДФ (аденозин-5′- дифосфат) на клітинному рівні – всі ці процеси потребують або базуються на використанні різних сполук фосфору. Таким чином, його неможливо замінити. З іншого боку, занадто велика кількість фосфору може завдати шкоди здоров’ю людини або стійкості екосистем. У природних екосистемах фосфор, як і більшість інших поживних речовин, в основному утворюється в результаті природних процесів формування органічних сполук фосфору із біомаси. Частина фосфору змивається поверхневими стоками та, проникаючи в ґрунтові води, потрапляє в озера або морські екосистем. Таким чином, екосистеми більш-менш збалансовані завдяки постійним процесам формування поживних речовин, таких як фосфор. Фосфорний баланс у екосистемах підтримується завдяки постійній циркуляції води. Якщо запаси фосфору не поповнювати, утворюється його дефіцит, і тоді втрати потрібно компенсувати штучно. Раніше цикли виробництва, споживання і накопичення відходів мали здебільшого локальний або регіональний характер. Фосфорні сполуки утворювались із залишків тварин або компосту. Цикли змінюються, якщо обсяги постачання сільськогосподарських культур (тварин) у міста перевищують обсяги формування поживних речовин з харчових відходів та стічних вод. Відтак в середовищах, що розташовані в низинах річок, поживних речовин не вистачає. Таким чином, втрати фосфорних сполук зростали в геометричній прогресії з кінця ХІХ ст. У ті часи тільки близько 30 % населення планети проживало у містах. У Європі ситуація змінювалася впродовж 30–50 років. На початку ХХ ст. уже майже 70 % населення проживало у містах. Така зміна викликала зовсім інший характер формуванням потоків матерії й енергії, відтак змінилися й регіональні цикли. Використання мінеральних добрив компенсувало збитки від втрат фосфору в регіональних циклах, починаючи з 1950–60-х років. Як правило, використання добрив для збагачення сільськогосподарських угідь перевищувало обсяги природного рівня формування фосфору. Сьогодні попит сільського господарства на фосфорні добрива більший, аніж природний рівень його відновлення. Таким чином, передбачається, що проблему забезпечення високого рівня споживання можна вирішити тільки шляхом видобутку й перероблення невідновлювальних мінеральних і фосфатних порід у фосфорні добрива. Глобальний річний обсяг виробництва фосфоритів збільшився майже в два рази у період із 1970 по 2010 рік. «Зелена» революція спричинила постійно зростаючий попит на фосфорні добрива. Підвищений рівень використання фосфорних добрив, на жаль, не сприяє збільшенню врожайності. Фосфор у значних обсягах накопичується у ґрунтах, потрапляє у стічні води, на сміттєві звалища або безпосередньо у відкриті водойми. У результаті виникають значні економічні проблеми. Таким чином, кращою економічною стратегією є зведення до мінімуму або припинення використання мінеральних фосфорних добрив, що включає: 1) істотне скорочення обсягів виробництва фосфорних добрив з апатитових руд або з ядерних відходів; 2) використання «нових» природних запасів фосфору, що утворились в результаті розпаду сільськогосподарських культур за останні 50 років; 3) зменшення зовнішніх впливів на навколишнє середовище, рівня забруднення поверхневих вод і втрат ґрунту; 4) закриття регіональних «чистих» циклів виробництва фосфорних добрив. Така стратегія є оптимальною і може принести певні соціальні ефекти. Якщо б витрати, пов’язані з формуванням екстернальних ефектів, включались у ціну фосфорних добрив, і при цьому застосовувався принцип «забруднювач платить», то їх би просто не купували. Використання фосфорних добрив було б негайно припинено, оскільки їх використання нерозривно пов’язують із забрудненням навколишнього середовища токсичними елементами і сполуками. Використання цих сполук, дійсно, завдає шкоди продовольчій безпеці, погіршує якість питної води і шкодить здоров’ю людини. Таким чином, використання фосфорних добрив – це питання еколого-економічної безпеки.

Посилання

Acksel, A., Kappenberg, A., Kühn, P., Leinweber, P. Humus-rich topsoils around the Baltic Sea, a product of human activity. Submitted to Geoderma regional.

Allievi, F., Vinnari, M., Luukkanen, J., 2015. Meat consumption and production – analysis of efficiency, sufficiency and consistency of global trends. Journal of Cleaner Production 92, 142– 151.

Amanullah, M. W. K., 2011. Interactive Effect of Potassium and Phosphorus on Grain Quality and Profitability of Sunflower in Northwest Pakistan. Pedosphere 21, 532–538.

Ashley, K., Cordell, D., Mavinic, D., 2011. The Phosphorus Cycle. A brief history of phosphorus: From the philosopher’s stone to nutrient recovery and reuse. Chemosphere 84, 737–746.

Bähr, J., 2007. Entwicklung von Urbanisierung. Berlin Institut für Bevölkerung und Entwicklung, Berlin 1–6, http://www.berlininstitut.org/fileadmin/user_upload/handbuch_texte/pdf_Baehr_Entwicklung_Urbani-sierung.pdf.

Bahri-Esfahani, J., George, T. S., Gadd, G. M., 2014. From A to B: mechanisms in A (Aspergillus) to phosphate release for B (Barley). 4th Sustainable Phosphorus Summit, Montpellier, France, 1–3 September 2014, Book of Abstracts.

Bakels, C. C., 1997. The beginnings of manuring in western Europe. Antiquity 71, 442-5

Barker, G., 2009. The Agricultural Revolution in Prehistory: Why did Foragers become Farmers? Oxford University Press. ISBN 978-0-19-955995-4.

Battini, F., Cristani, C., Agnolucci, M., Giovannetti, M., 2014. Phosphate solubilizing bacteria associated with arbuscular mycorrhizal fungi, beneficial symbionts of crop plants. 4th Sustainable Phosphorus Summit, Montpellier, France, 1–3 September 2014, Book of Abstracts.

Baum, C., Kahle, P., Köhn, J., Leinweber, P., 2013. Boden- und sozio-ökologische Auswirkungen von Kurzumtriebsplantagen. In: Gülzower Fachgespräche 43, Agrarholzkongress 2013, Berlin, 19– 20 Februar 2013, ISBN 978-3-942147-12-5, 334–343.

BEACON 2014. A Scenario Analysis of the Potential Costs of Implementing the Phosphorus Management Tool on the Eastern Shore of Maryland. Salisbury University, 1–43.

Bocquet-Appel, J. P., 2011. When the World’s Population Took Off: The Springboard of the Neolithic Demographic Transition. Science 333, 560–561.

Bolan, N. S., Wong, L., Adriano, D. C., 2004. Nutrient removal from farm effluents. Bioresource Technology 94, 251–260.

Bridger, G-L., Salutsky, M. L., Starostka, R. W., 1962. Micronutrient Sources, Metal Ammonium Phosphates as Fertilizers J Agric Food Chem 10, 181–188.

Buckley, C., Carney, P., 2013. The potential to reduce the risk of diffuse pollution from agriculture while improving economic performance at farm level. Environmental Science Policy 25, 118–126.

Burns, R. T., Moody, L. B., 2002. Phosphorus recovery from animal manures using optimized struvite precipitation. Proceedings of Coagulants and Flocculants: Global Market and Technical Opportunities for Water Treatment Chemicals, Chicago.

Butzer, K. L., 1976. Early Hydraulic Civilization in Egypt. Chicago: University of Chicago. Press.

Carliell-Marquet, C. M., Cooper, J., 2014. Towards closed loop phosphorus management: The UK Water Industry. 4th Sustainable Phosphorus Summit, Montpellier, France, 1-3 September 2014, Book of Abstracts.

Chen, M., Graedel, T. E., 2015. The potential for mining trace elements from phosphate rock. J Cleaner Production 91, 337–346.

Childers, D. L., Corman, J., Edwards, M., Elser, J. J., 2011. Sustainability Challenges of Phosphorus and Food: Solutions from Closing the Human Phosphorus Cycle. BioScience 61, 2, 117–124.

Clift, R., Shaw, H., 2012. An Industrial Ecology Approach to the Use of Phosphorus. Procedia Engineering 46, 39–44.

Conry, M. J., 1971, Irish plaggen soils-their distribution, origin, and properties. J Soil Science, 22, 401–416.

Cordell, D., White, S., 2015a. Tracking phosphorus security: Indicators of phosphorus vulnerability in the global food system. Food Security 7, 337–350.

Cordell, D., 2010. The story of phosphorus. Sustainability implications of global phosphorus scarcity for food security. PhD-thesis, Linköping University.

Cordell, D., Drangert, J-O, White, S., 2009. The story of phosphorus: Global food security and food for thought. Global Environmental Change 19, 292–305.

Cordell, D., Rosemarin, A., Schröder, J. J., Smit, A. L., 2011. Towards global phosphorus security: A systemic framework for phosphorus recovery and reuse options, Chemosphere Special Issue on Phosphorus 84, 747–758.

Cordell, D., Turner, A., Chong, J., 2015. The hidden cost of phosphorus fertilizers: mapping multi- stakeholder supply chain risks and impacts from mine to fork. Global Change, Peace Security 27, 323–343.

Costanza, R., Greer, J., 1995. The Chesapeake Bay and its watershed: A model for sustainable ecosystem management? in Gunderson, L. H., Holling, C. S., Light, S. S., 1995 eds. Barriers and Bridges to the renewal of ecosystem and institutions. Columbia University Press, New York, 169– 213.

Cunfer, G., Krausmann, F., 2009. Sustaining Soil Fertility: Agricultural Practice in the Old and New Worlds. Global Environment 2, 8–47.

Davidson, D. A., Simpson, I. A., 1984. The formation of deep topsoils in Orkney. Earth Surface Processes and Landforms, 9, 75–81.

De Wit, M., Behrendt, H., 1999. Nitrogen and phosphorus emissions from soil to surface water in the Rhine and Elbe basins. Water Science and Technology, 39, 109–116.

Deutschlandfunk 2016. Handel mit Afrikas letzter Kolonie. http://www.deutschlandfunk.de/eu- marokko-und-der-westsahara-konflikt-handel-mit-afrikas.724.de.html?dram:article_id=366913. Accessed 14 Jan 2017.

Dolman, M. A., Sonneveld, M. P. W., Mollenhorst, H., de Boer, I. J. M., 2014. Benchmarking the economic, environmental and societal performance of Dutch dairy farms aiming at internal recycling of nutrients. J Cleaner Production 73, 245–252.

Drangert, J-O., 2012. Phosphorus – a limited resource that could be made limitless. Procedia Engineering 46, SYMPHOS 2011 – 1st International Symposium on Innovation and Technology in the Phosphate Industry, Mohamed, A. ed., 228–233.

FAO 2011. Global food losses and food waste – Extent, causes and prevention. http://www.fao.org/docrep/014/mb060e/mb060e00.htm. Accessed 12 Jan 2017.

FAO 2017. Fishery and Aquaculture Country Profiles. The Republic of Peru. http://www.fao.org/fishery/facp/PER/en, Accessed 1 Feb 2017.

Fedick, S. L., Ford, A., 1990. The Prehistoric Agricultural Landscape of the Central Maya Lowlands: An Examination of Local Variability in a Regional Context. World Archaeology, 22, 1, Soils and Early Agriculture, 18–33.

Filippelli, G. M., 2011. Phosphate rock formation and marine phosphorus geochemistry: The deep time perspective. The Phosphorus Cycle. Chemosphere 84, 759–766.

Gentry, L. E., David, M. B., Royer, T. V., Mitchell, C. A., Starks, K. M., 2007. Phosphorustransport pathways to streams in tile-drained agricultural watersheds. J Environ Qual 36, 408–415.

Gholamhoseini, M., Ghalavand, A., Khodaei-Joghan, A., Dolatabadian, A., Zakikhani, H., Farmanbar, E., 2013. Zeolite-amended cattle manure effects on sunflower yield, seed quality, water use efficiency and nutrient leaching. Soil and Tillage Research 126, 193–202.

Gilliam, J. W., 1995. Phosphorus control strategies. Ecological Engineering 5, Phosphorus dynamics in the Lake Okeechobee Watershed, Florida, 405–414.

Giraud, P-N., 2011. A note on Hubbert’s hypotheses and techniques. Working Paper 2011-03, Cerna, MINES, Paris Tech.

Gowdy, J. M., McDaniel, C., 2000. Paradise for Sale: A Parable of Nature. University of California Press.

Grünberg, W., Scherpenisse, P., Dobbelaar, P., Idink, M. J., Wijnberg, I. D., 2015. The effect of transient, moderate dietary phosphorus deprivation on phosphorus metabolism, muscle content of different phosphorus-containing compounds, and muscle function in dairy cows. J Dairy Science 98, 5385–5400.

Gustafsson, B. G., Schenk, F., Bleckner, T., Eilola, K., Meier, H. E. M., Müller-Karulis, B., Neumann, T., Ruoho-Airola, T., Savchuk, O. P., Zorita, E., 2012. Reconstructing the development of Baltic Sea eutrophication 1850–2006. Ambio 41, 534–548.

Habashi, F., 1960. Die Vorgänge bei der Gewinnung von Uran aus Phosphorsäure. J Inorganic and Nuclear Chemistry 13, 125–137.

Harenz, H., 1991. Permanente Phosphoranreicherung der Böden der DDR – eine Ursache der zunehmenden Phosphorbelastung der Gewässer aus diffusen Quellen. in: Erste Nationale Konferenz zum Schutz der Meeresumwelt der Ostsee. Umweltbundesamt Texte 14/91, 93–106.

Hasler, K., Bröring, S., Omta, S. W. F., Olfs, H-W., 2015. Life cycle assessment (LCA) of different fertilizer product types. European J Agronomy 69, 41–51.

Heckenmüller, M., Narita, D., Klepper, G., 2014. Global Availability of Phosphorus and Its Implications for Global Food Supply: An Economic Overview. Kiel Working Paper No. 1897, 1– 26.

Hedley, M. J., Stewart, J. W. B., Chauhan, B. S., 1982. Changes in inorganic and organic soil phosphorus fractions by cultivation practices and by laboratory incubations. Soil Sci. Soc. Am. J. 46, 970–976.

Heffer, P., Prud´homme, M., 2014. Fertilizer outlook 2014–2018. 82. IFA Annual Conference. http://www.fertilizer.org/imis20/images/Library_Downloads/2014_ifa_sydney_summary.pdf.

Helyar, K. R., 1998. Efficiency of nutrient utilization and sustaining soil fertility with particular reference to phosphorus. Nutrient use efficiency in rice cropping systems. Field Crops Research 56, 187–195.

Hotelling, H., 1931. The Economics of Exhaustible Resources. Journal of Political Economy, 39(2), 137–175.

Hubbert, M. K., 1979. Hubbert estimates from 1956 to 1974 of US oil and gas. Methods and Models for Assessing Energy Resources. Grenon, M. ed., First IIASA Conference on Energy Resources, May 20–21, 1975, 370–383.

Huffmann, M. M., 2015. Food and environmental allergies. Primary Care: Clinics in Office Practice, 42, Primary Care for School-Aged Children, McClain, E. K., ed., 113–128.

Hughes, J. D., 1992. Sustainable agriculture in ancient Egypt. Agricultural History, 12–22.

Hunter, P. J., Teakle, G. R., Bending, G. D., 2014. Root traits and microbialcommunity interactions in relation to phosphorus availability and acquisition, with particular reference to Brassica. Frontiers in Plant Science 5, 1–18.

Iho, A., Laukkanen, M., 2012. Precision phosphorus management and agricultural phosphorus loading. Ecological Economics, Volume 77, 91–102.

Innes, R., 2013. Economics of agricultural residuals and overfertilization: Chemical fertilizer use, livestock waste, manure management, and environmental impacts. Shogren, J. F. ed. Reference Module in Earth Systems and Environmental Sciences. Encyclopedia of Energy, Natural Resource, and Environmental Economics, 2, Resources, 50–57.

Jat, M. L., Kumar, D., Majumdar, K., Kumar, A., Shahi, V., Satyanarayana, T., Pampolino, M., Gupta, N., Singh, V., Dwivedi, B. S., Singh, V. K., Singh, V., Kamboj, B. R., Sidhu, H. S., Johnston, A., 2012. Crop response and economics of phosphorus fertiliser application in rice, wheat and maize in the indo-gangetic plains. Indian J. Fert., Vol. 8, 62–72.

Jiao, X., Shen, J., Zhang, F. S., 2014. Phosphorus balances and yield responses of crops as affected by phosphorus fertilization in China. 4th Sustainable Phosphorus Summit, Montpellier, France, 1–3 September 2014, Book of Abstracts.

Kaur, G., Reddy, M. S., 2015. Effects of phosphate-solubilizing bacteria, rock phosphate and chemical fertilizers on maize-wheat cropping cycle and economics. Pedosphere, 25, 428–437.

Killiches, F., 2013. Phosphat: Mineralischer Rohstoff und unverzichtbarer Nährstoff für die Ernährungssicherheit weltweit. Ed. Federal Institute for Geosciences and Natural Resources (BGR) by order of Federal Ministry for Economic Cooperation and Development (BMZ), in German, http://www.bgr.bund.de/DE/Themen/Zusammenarbeit/Techn Zusammenarbeit/Politikberatung_SV_MER/Downloads/phosphat.html?nn=2722886.

Knolle, F., 2008. Ein Beitrag zu Vorkommen und Herkunft von Uran in deutschen Mineral- und Leitungswassern. Dissertation, Technische Universität Braunschweig.

Köhn, J., 1999. Economics of a Baltic Sea sustainability approach. Limnologica 29, 346–361.

Koppelaar, R. H. E. M., Weikard, H-P., 2013. Assessing phosphate rock depletion and phosphorus recycling options. Global Environmental Change 23, 1454–1466.

Kruse, J., Abraham, M., Amelung, W., Baum, C., Bol, R., Kühn, O., Lewandowski, H., Niederberger, J., Oelmann, Y., Rüger, C., Santner, J., Siebers, M., Siebers, N., Spohn, M., Vestergren, J., Vogts, A., Leinweber, P., 2015. Innovative methods in soil phosphorus research: A review. J Plant Nutr Soil Sci 178, 43–88.

Kucey, R. M. N., Janzen, H. H., Leggett, M. E., 1989. Microbially mediated increases in plant- available phosphorus. Advances in Agronomy 42, 199–228.

Laane, R. W. P. M., Brockmann, U., van Liere, L., Bovelander, R., 2005. Immission targets for nutrients (N and P) in catchments and coastal zones: a North Sea assessment. The European contribution to global coastal zone research: An ELOISE (European Land-Ocean Interaction Studies) project. Estuarine, Coastal and Shelf Science 62, 495–505.

LAWA (Länderarbeitsgemeinschaft Wasser), 1998. Beurteilung der Wasserbeschaffenheit von Fließgewässern in der Bundesrepublik Deutschland, Chemische Gewässergüteklassifikation, Kulturbuchverlag Berlin GmbH, Berlin.

LAWA (Länderarbeitsgemeinschaft Wasser), 2007. Rahmenkonzeption Monitoring, Teil B: Bewertungsgrundlagen und Methodenpapier, Arbeitspapier II: Hintergrund- und Orientierungswerte für physikalisch-chemische Komponenten, Stand: 7.03.2007.

Lewis, C., 2014. P is for Plunder – Phosphate from Western Sahara. 4th Sustainable Phosphorus Summit, Montpellier, France, 1–3 September 2014, Book of Abstracts.

Li, G. H., van Ittersum, M. K., Leffelaar, P. A., Sattari, S. Z., Li, H. G., Huang, G. Q., Ma, L., Zhang, F. S., 2014. Quantifying phosphorus flows at different levels in China to identify potential measures to improve the management. 4th Sustainable Phosphorus Summit, Montpellier, France, 1– 3 September 2014, Book of Abstracts.

Machovina, B., Feeley, K. J., Ripple, W. J., 2015. Biodiversity conservation: The key is reducing meat consumption. Science of the Total Environment 536, 419–431.

Maine, N., Nell, W. T., Lowenberg-DeBoer, J., Alemu, Z. G., 2007. Economic analysis of phosphorus applications under variable and single-applications in the Bothaville district. Akrekon 46, 532–547.

März, C., Poulton, S. W., Beckmann, B., Küster, K., Wagner, T., Kasten, S., 2008, Redox sensitivity of P cycling during marine black shale formation: Dynamics of sulfidic and anoxic, non-sulfidic bottom waters. Geochimica et Cosmochimica Acta 72, 3703–3717.

McColl, R. H. S., White, E., Gibson, A. R., 1977. Phosphorus and nitrate runoff in hill pasture and forest catchments, Taita, New Zealand. NZ J. Mar Freshwater Res. 11:729–744.

Metson, G. S., Iwaniec, D. M., Baker, L. A., Bennett, E. M., Childers, D. L., Cordell, D., Grimm, N. B., Grove, J. M., Nidzgorski, D. A., White, S., 2015. Urban phosphorus sustainability: Systemically incorporating social, ecological, and technological factors into phosphorus flow analysis. Environmental Science Policy 47, 1–11.

Meyer, G., Nanzer, S., Bonvin, C., Udert, K. M., Etter, B., Mäder, P., Frossard, E., Oberson, A., 2014. Plant uptake of phosphorus recycled from waste water and sewage sludge ashes. 4th Sustainable Phosphorus Summit, Montpellier, France, 1–3 September 2014, Book of Abstracts.

Molinos-Senante, M., Hernández-Sancho, F., Sala-Garrido, R., Garrido-Baserba, M., 2011. Economic Feasibility Study for Phosphorus Recovery Processes. Ambio 40, 408–416.

Mort, H. P., Slomp, C. P., Gustafsson, B. G., Andersen, T. J., 2010, Phosphorus recycling and burial in Baltic Sea sediments with contrasting redox conditions. Geochimica et Cosmochimica Acta 74, 1350–1362.

Moss, B., 1998. Eutrophication research state-of-the art: Inputs, processes, effects, modelling, management. The E numbers of eutrophication – errors, ecosystem effects, economics, eventualities, environment and education. Water Science and Technology 37, 75–84.

Motsara, M. R., 2002. Available nitrogen, phosphorus and potassium status of Indian soils as depicted by soil fertility maps. Fertilizer News 47, 15–21.

Munson, R. D., Doll, J. P., 1959. The economics of fertilizer use in crop production. Adv. Agronomy 11, 133–169.

Neset, T. S., Cordell, D., 2012. Global phosphorus scarcity: identifying synergies for a sustainable future. J Science of Food and Agriculture 92, 2–6.

Nyborg, M., Malhi, S. S., Mumey, G., Penney, D. C., & Laverty, D. H., 1999. Economics of phosphorus fertilization of barley as influenced by concentration of extractable phosphorus in soil. Communications in Soil Science and Plant Analysis, 30, 1789–1795.

Ott, C., Rechberger, H., 2012. The European phosphorus balance. Resourc. Conserv. Recycl. 60, 159–172.

Palomo, L., Claassen, N. Jones, D. L., 2006, Differential mobilization of P in the maize rhizosphere by citric acid and potassium citrate. Soil Biology Biochemistry 38, 683–692.

Petrovic, Z., Djordjevic, V., Milicevic, D., Nastasijevic, I., Parunovic, N., 2015. Meat production and consumption: Environmental consequences. Procedia Food Science 5, 235–238.

Prud`home, M., 2010. Peak phosphorus: an issue to be addressed. Fertilizers and Agriculture, International Fertilizer Industry Association (IFA), February 2010.

Rao, N. S., Easton, Z. M., Schneiderman, E. M., Zion, M. S., Lee, D. R., Steenhuis, T. S., 2009. Modeling watershed-scale effectiveness of agricultural best management practices to reduce phosphorus loading. J Environmental Management, 90, 1385–1395.

Razzaque, M. S., 2011. Phosphate toxicity: new insights into an old problem, Clin Sci Lond, 120, 3, 91–97.

Redfield, A. C., 1958. The biological control of chemical factors in the environment. Am Sci 46, 205-21.

Richardson, A. E., Barea, J-M., McNeill, A. M., Prigent-Combaret, C., 2009, Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321, 305–339.

Ringeval, B., Nowak, B., Nesme, T., Delmas, M., Pellerin, S., 2014. Contribution of anthropogenic phosphorus to agricultural soil fertility and food production, Global Biogeochem Cycles, 28, 743– 756.

Römer, W., 2006. Vergleichende Untersuchungen zur Pflanzenverfügbarkeit von Phosphat aus verschiedenen P-Recycling-Produkten im Keimpflanzenversuch. J Plant Nutrient Soil Science 169, 826–832.

Ryan, J., Ibrikci, H., Delgado, A., Torrent, J., Sommer, R., Rashid, A., 2012. Chapter three – Significance of Phosphorus for Agriculture and the Environment in the West Asia and North Africa Region. Adv. Agronomy 114, 91–153.

Rydin, E., Malmaeus, J. M., Karlsson, O. M., Jonsson, P, 2011. Phosphorus release from coastal Baltic Sea sediments as estimated from sediment profiles. Estuarine, Coastal and Shelf Science 92, 111–117.

Sanchez, P. A., Shephard, K. D., Soule, M. J., Place, F. M., Buresh, R. J., Izac, A. N., Mokwunye,

A. U., Kwesiga, F. R., Ndiritu, C. G., Woomer, P. L., 1997. Soil fertility replenishment in Africa: An investment in natural resource capital. In Buresh, RJ et al. eds, Replenishing Soil Fertility in Africa. SSSA, Madison, WI.

Schnug, E., Haneklaus, N., 2014. Uranium, the hidden treasure in phosphates. Procedia Engineering 83, 265–269.

Scholz, R. W., Wellmer, F-W., 2013. Approaching a dynamic view on the availability of mineral resources: What we may learn from the case of phosphorus? Global Environmental Change 23, 11–27.

Scholz, R. W., Wellmer, F-W., 2015a. Losses and use efficiencies along the phosphorus cycle. Part 1: Dilemmata and losses in the mines and other nodes of the supply chain. Resources Conservation Recycling 105, 216–234.

Scholz, R. W., Wellmer, F-W., 2015b. Losses and use efficiencies along the phosphorus cycle – Part 2: Understanding the concept of efficiency. Resources Conservation Recycling 105, 259–274.

Schröder, J. J., Cordell, D., Smit, A. L., Rosemarin, A., 2010. Sustainable use of phosphorus. Plant Research International, Wageningen University, Report 357, 1–124.

Shakhramanyan, N. G., Schneider, U. A., McCarl, B. A., Lang, D. J., Schmid, E., 2012. The impacts of higher mineral phosphorus prices and externality taxation on the use of organic phosphorus sources in US agriculture. Institute of Ethics and Transdisciplinary Sustainability Research (IETSR), Leuphana University Lüneburg, Working Paper IETSR-1, 28 pp.

Smil, V., 2000. Phosphorus in the environment: Natural flows and human interferences. Annual Revue Energy Environ 25, 53–88.

Smil, V., 2002a. Phosphorus: Global Transfers. in: Encyclopedia of Global Environmental Change, 3, Causes and consequences of global environmental change, Douglas, I. ed., John Wiley & Sons, Chichester, 536–542.

Smil, V., 2002b. Worldwide transformation of diets, burdens of meat production and opportunities for novel food proteins. Enzyme and Microbial Technology 30, 305–311.

Suriyagoda, L., Weerarathne, V., Sirisena, D., Wissuwa, M., 2014. Towards the selection of phosphorus efficient rice varieties. 4th Sustainable Phosphorus Summit, Montpellier, France, 1–3 September 2014, Book of Abstracts.

Syers, K., Bekunda, M., Cordell, D., Corman, J., Johnston, J., Rosemarin, A., Salcedo, I., 2011. Phosphorus and food production. UNEP Year Book 2011, 35–45.

Tiemeyer, B., Kahle, P., Lennartz, B., 2009. Phosphorus losses from an artificially drained rural lowland catchment in North-Eastern Germany. Agric Water Manag 96, 677–690.

Thitanuwat, B., Polprasert, C., Englande Jr. A. J., 2016. Quantification of phosphorus flows throughout the consumption system of Bangkok Metropolis, Thailand. Science Total Environment 542, 1106–1116.

Turner, R. K., Georgiou, S., Gren, I-M., Wulff, F., Barrett, S., Söderqvist, T., Bateman, I. J., Folke, C., Langaas, S., Żylicz, T., Mäler, K-G., Markowska, A., 1999. Managing nutrient fluxes and pollution in the Baltic: an interdisciplinary simulation study. Ecological Economics 30, 333–352.

US Geological Survey 2016. Mineral commodity summaries 2016. 124–125 http://dx.doi.org/10.3133/70140094, https://minerals.usgs.gov/minerals/pubs/mcs/2016/mcs2016.pdf. Accessed 12 Jan 2017.

Vaccari, D. A., Strigul, N., 2011. Extrapolating phosphorus production to estimate resource reserves. Chemosphere 84, 792–797.

Valente, S., Burriesci, N., Cavallaro, S., Galvagno, S., 1982. Utilization of zeolites as soil conditioner in tomato-growing. Zeolites 2, 271–274.

Van Dijk, K. C., Lesschen, P. J., Oenema, O., 2016. Phosphorus flows and balances of the European Union Member States. Science Total Environment 542, 1078–1093.

Verheyen, D., van Gaelen, N., Ronchi, B., Batelaan, O., Struyf, E., Govers, G., Merckx, R., Diels, J., 2015. Dissolved phosphorus transport from soil to surface water in catchments with different land use. Ambio 44, 228–240.

Wang, L., Huang, L-J., Yun, L-J., Tang, F., Zhao, J-H., Liu, Y-Q., Zeng, X., Luo, Q-F., 2008. Removal of Nitrogen, Phosphorus, and Organic Pollutants From Water Using Seeding Type Immobilized Microorganisms. Biomedical and Environmental Sciences, Volume 21, 150–156.

Weikard, H-P., Seyhan, D., 2009. Distribution of phosphorus resources between rich and poor countries: The effect of recycling. Ecological Economics 68, 1749–1755.

Withers, P. J. A., van Dijk, K. C., Neset, T. S., Nesme, T., Oenema, O., Rubaeck, G. H., Schoumans, O. F., Smit, B., Pellerin, S., 2015. Stewardship to tackle global phosphorus inefficiency: The case of Europe. Ambio 44, 193–206.

WRI – World Resources Institute 1994. World Resources 1994–95. Oxford University Press, 1994.

Wu, J., Franzén, D., Malmström, M. E., 2015. Anthropogenic phosphorus flows under different scenarios for the city of Stockholm, Sweden. Science Total Environment, Available online 9 October 2015.

Zhang, F. S., Ma, L., Li, G. H., Bai, Z. H., Li, H. G. 2014. Our phosphorus World – Picture in intensive agriculture of emerging countries in Asia. 4th Sustainable Phosphorus Summit, Montpellier, France, 1–3 September 2014, Book of Abstracts.

Zhang, W., Wenqi, M., Yuexiu, J., Mingsheng, F., Oene, O., Zhang, F., 2008. Efficiency, economics, and environmental implications of phosphorus resource use and the fertilizer industry in China. Nutr Cycl Agroecosyst 80, 131–144.

Zimmer, D., Kahle, P., Baum, C., 2016, Loss of soil phosphorus by tile drains during storm events. Agricultural Water Management 167, 21–28.

Переглядів статті: 18
Завантажень PDF: 11
Опубліковано
2017-03-29
Як цитувати
Кьон, Й., ЗiммeрД., & ЛeiнвeбeрП. (2017). «ФОСФОРНА» ЕКОНОМІКА – ОГЛЯД. Mechanism of an Economic Regulation, (1 (75), 6-28. вилучено із http://mer-journal.sumy.ua/index.php/journal/article/view/304
Розділ
ЕКОНОМІКА ПРИРОДОКОРИСТУВАННЯ І ЕКОЛОГО-ЕКОНОМІЧНІ ПРОБЛЕМИ