DATA MINING METHODS AND MODELS FOR SOCIAL AND ECONOMIC PROCESSES FORECASTING
Abstract
Developing social and economic systems and ensuring efficiency of social and economic processes is one of the major tasks for the government of any country. Forecasting models used for analyzing large data sets allow more efficient enterprise management. Big Data is a key resource that provides a competitive advantage to many businesses. The widespread use of Data Mining in retail, marketing, finance, healthcare, industrial production, and other areas suggests that gathered and processed information not only provides useful business information, but also allows more accurate evaluation and development of detailed business plans and development strategies. The use of Data Mining methods and models in forecasting tasks of socio-economic processes provides more accurate predictive calculations. To select the best method for solving prediction problems it is necessary to clearly understand whether the macro series is stationary or non-stationary. We must clearly understand whether our macro series is a clear trend or seasonality. For prediction of stationary time series, the most popular models are autoregression and moving average models. ARIMA models cover a sufficiently wide range of time series, and small modifications of these models allow seasoning time series to be more accurately described. This article discusses the role of Data Mining in social and economic processes, as well as the potential of using Big Data in a business environment. This article demonstrates procedures for using Data Mining methods for practical implementation of Data Mining algorithms to forecast Ukraine’s GDP with Python codes, using the statsmodels package. This article analyzes the possibilities of using ARIMA model and uses a double exponential smoothing model for forecasting Ukraine’s GDP.
References
Barsehian, A. A. Kupryianov, M. S., Stepanenko, V. V., et al. (2004). Metodyi i modeli analiza dannyih: OLAP i DatanMining [Methods and data analysis models]. SPb.: BHV-Peterburg.
Bekkauer, A. O. (2016). Vykorystannia tekhnolohii Data Mining dlia avtomatyzatsii biznes-protsesiv na vyrobnytstvi [Using Data Mining Technologies to Automate Business Processes] Systemy obrobky informatsii, 1(138), 161–163.
Berzlev, O. Iu. (2013). Suchasnyi stan informatsiinykh system prohnozuvannia chasovykh riadiv [The current state of information systems for forecasting time series]. Upravlinnia rozvytkom skladnykh system, 13, 78–82. Retrieved from http://urss.knuba.edu.ua/files/zbirnyk-13/78-82.pdf.
Valovyi vnutrishnii produkt. (2018). [Gross Domestic Product]. Minfin. Retrieved from https://index.minfin.com.ua/ua/economy/gdp/.
“Velyki dani”: mozhlyvosti i vyklyky [“Big Data”: opportunities and challenges]. Akademiia “Maibutnie bukhhalterii”. Retrieved from https://www.nctbpu.org.ua/userfiles/file/analitics/big_data_its_power_and_perils_ua.pdf.
Vigers, K., Bitti, D. (2014). Razrabotka trebovaniy k programmnomu obespecheniyu [Development of software requirements]. Moscow: Izdatelstvo “Russkaya redaktsiya”. Saint Petersburg: BHV- Peterburg.
Hlybovets, M. M. & Hulaieva, N. M. (2013). Evoliutsiine prohramuvannia [Evolutionary programming]. Problemy prohramuvannia, 4, 3–13. Retrieved from http://nbuv.gov.ua/UJRN/Progr_2013_4_2.
Hnitetskyi, Ye. V. (2017). Big Data v marketynhu: oriientatsiia na spozhyvacha [Big Data in Marketing: Consumer Orientation] Ekonomichnyi visnyk NTUU “KPI”, 14. Retrieved from http://ev.fmm.kpi.ua/article/view/108730.
Dyuk, V. & Samoylenko, A. (2001). “Data Mining”: uchebnyiy kurs [“Data Mining”: study course]. SPb.: Piter, 368.
Eksler, R. (2017). Big Data: velyki dani, bezmezhni mozhlyvosti [Big Data: large data, infinite possibilities]. Biznes. Retrieved from https://biz.nv.ua/ukr/experts/exler_ron/big-data-veliki-dani- bezmezhni-mozhlivosti-1565514.html.
Kalinina, I. V. & Lisovychenko, O. I. (2015). Vykorystannia henetychnykh alhorytmiv v zadachakh optymizatsii [Use of genetic algorithms in optimization problems]. Mizhvidomchyi naukovo- tekhnichnyi zbirnyk “Adaptyvni systemy avtomatychnoho upravlinnia”, 1(26), 48–61.
Karlberg, K. (2013). Biznes-analiz s ispolzovaniyem Excel. Resheniye biznes-zadach [Business analysis using Excel. Solution of business problems]. Business Analysis: Microsoft Excel. М.: “Viliams”, 576.
Kovalchuk, K. F. & Nykytenko, O. K. (2013). Spetsyfika prohnozuvannia finansovykh rynkiv na osnovi tekhnolohii Knowledge Mining [Specifics of financial risks forecasting on the basis of Knowledge Mining technology]. Ekonomichnyi visnyk, 4, 139–146.
Kravets, І. О. & Uzun, T. F. (2017). Vybir ta doslidzhennia efektyvnosti alhorytmiv Data Mining stosovno analizu sotsialno-ekonomichnykh pokaznykiv [Selection and research of the efficiency of Data Mining algorithms in relation to socio-economic indicators analysis] Kompiuterni tekhnolohii. Naukovi pratsi, 44, 114–125.
Krivtsova, E. (2015). Big Data: Vliyaniye na biznes. Obzor i perspektivy rynka [Big Data: Impact on Business. Overview and market prospects]. DataReview. Retrieved from http://datareview.info/article/big-data-vliyanie-na-biznes-obzor-i-perspektivyi-ryinka/.
Marchenko, O. O. & Rossada, T. V. (2017). Aktualni problemy Data Mining [Actual problems of Data Mining]. Kyiv: KNU imeni T.Shevchenka, 150.
Minakova, V. P. & Shikovets, K. O. (2017). Aktualnist vykorystannia modeli Big Data v biznes- protsesakh [Relevance of Big Data model use in business processes]. Ekonomika i suspilstvo, 10, 892– 896.
Model avtorehresii i kovznoho serednoho (ARMA) [Autoregressive and Moving Average Model (ARMA)]. Retrieved from http://ekon.in.ua/modele-avtoregresiyi-i-kovznogo-seredneogo-arma.html.
Sotnyk, I. M. & Taranyuk, L. M. (Eds.). (2018). Pidpryiemnytstvo, torhivlia ta birzhova diialnist [Entrepreneurship, trade and stock exchange activities]. Sumy: VTD “Universytetska knyha”, 572.
Pleskach, V. L. & Zatonatska, T. H. (2011). Informatsiini systemy i tekhnolohii na pidpryiemstvakh [Information systems and technologies for enterprises]. Kyiv: Znannia.
Samoilenko, L. B. (2018). Mozhlyvosti ta problemy zastosuvannia tekhnolohii Big Data vitchyznianymy kompaniiamy [Opportunities and problems of using Big Data technologies by domestic companies] Efektyvna ekonomika, 1. Retrieved from http://www.economy.nayka.com.ua/pdf/1_2018/59.pdf.
Skakalina, O. V. (2015). Alhorytmy metodu hrupovoho vrakhuvannia arhumentiv pry korotkostrokovomu prohnozuvanni [Algorithms for the method of group consideration of arguments for short-term forecasting]. Visnyk KrNU imeni Mykhaila Ostrohradskoho, 1(90). 18–26.
Kharynovych-Yavorska, D. O. (2017). Zastosuvannia neiromerezhevykh tekhnolohii dlia prohnozuvannia konkurentnoi stratehii torhovelnykh pidpryiemstv [Application of neural network technologies for forecasting of competitive strategy of trading enterprises]. Mizhnarodnyi naukovyi zhurnal “Internauka” Ceriia: “Ekonomichni nauky”, 2(2), 25–30.
Chto takoye Data Mining [What is Data Mining] (2003). Journal ВРМ World Intersoft Lab. Retrieved from http://iso.ru/ru/press-center/journal/1948.phtml.
Shakhovska, N. B. (2015). Model Velykykh danykh “sutnist-kharakterystyka” [Big Data Model “essence-characteristic”]. Visnyk Natsionalnoho universytetu “Lvivska politekhnika”. Seriia: Informatsiini systemy ta merezhi, 814, 186–196.
Shumska, S. S. (2015). Makroekonomichne prohnozuvannia [Macroeconomic forecast]. Kyiv: Vydavnychyi dim “Kyievo-Mohylianska akademiia”, 176.
Shuriga, L. (2014). Intellektualnyy analiz dannykh – “zolotaya zhila” bolshogo biznesa [Intelligent data analysis is the “gold mine” of big business]. DataReview. Retrieved from http://datareview.info/article/data-mining-zolotonosnaya-zhila-bolshogo-bizn/.
Beyer, M. А. (2012). The Importance of “Big Data”: A Definition Gartner. Retrieved from https://www.gartner.com/id=2057415.
Box-Cox Normality Plot. NIST/SEMATECH e-Handbook of Statistical Methods. Retrieved from https://www.itl.nist.gov/div898/handbook/eda/section3/eda336.htm.
Knaflic, C. N. (2015). Storytelling with Data: A Data Visualization Guide for Business Professionals. Hoboken, NJ: John Wiley and Sons, Ltd, 288.
Peters, E. E. (1994). Fractal market analysis: applying chaos theory to investment and economics. John Wiley & Sons, Inc, 336.
Schroeder, R., Halsall, J. (2016). Big data business models: Challenges and opportunities, Cogent Social Sciences, 2:1. Retrieved from https://www.tandfonline.com/doi/pdf/10.1080/23311886.2016.1166924?needAccess=true.