SCIENTIFIC SUBSTANTIATION OF INCREASE OF TECHNICAL AND ECONOMIC EFFICIENCY OF USE OF SOLAR ENERGY
Abstract
The article is devoted to finding ways to improve the efficiency of using solar panels. In the mainstream of increasing the economic efficiency of solar stations' operation, methods of reducing the cost of generating electricity based on solar energy are considered. The purpose of the article is to study ways of more efficient use of solar energy and compare the types of installation of photovoltaic converters. The study's main focus is on solar tracking systems, which give the best price/efficiency ratio for solar stations. In particular, the economic feasibility of using a biaxial tracking system for solar panels has been investigated. The advantages and disadvantages of this approach are considered. The energy potential of solar radiation under terrestrial conditions is analyzed. A table of dependences of the angle of motion of the Sun in time for one light day for the conditions of the Sumy region was built. The maximum value of the intensity of solar radiation per year per 1 m2 is calculated. The graph of the average monthly electricity production was built. In the course of the work, an experiment was set up, within the framework of which four options for photoelectric converters' placement were calculated: with automatic guidance to the Sun; inclined type; vertical type; with a fixed angle. It has been established that for the city of Sumy a two-axis orientation system is most effective. According to the results of processing the experimental data, the system with the tracker provides almost 24% more power generation than the stationary installation option (fixed angle) of the photoelectric converter module. Energy organizations and enterprises can use the study results, authorities and other stakeholders in the field of alternative energy.
References
Шиняков, Ю. А., Шурыгин Ю. А., Аркатова О. Е. Повышение энергетической эффективности автономных фотоэлектрических энергетических установок // Электроника, измерительная техника, радиотехника и связь. Доклады ТУСУРа. – № 2 (22). – Часть 2. – 2010. – С. 102.
Попель, О. С. К расчету поступления солнечной радиации на земную поверхность / О. С. Попель, С. Е. Фрид, Г. М. Альварес // Гелиотехника. – 1986. – №1. – С.56.
Плеханов, С. И. Оценка возможностей роста производства солнечных элементов на основе CdTe, CIGS и GaAs/Ge в период 2010-2025 гг. [Электронный ресурс] / С. И. Плеханов, А. В. Наумов. – Режим доступа : AEnergy.ru
Наумов, А. В. Развитие солнечной энергетики на основе тонкопленочных CIGS-элементов / А. В. Наумов, С. И. Плеханов // Энергия: экономика, техника, экология. − 2013. − № 7. − С. 14.
Кузнецов, Ф. А. Кремний для солнечной энергетики / Ф. А. Кузнецов, М. Ф. Резниченко // Материалы электронной техники. – 2008. – №4. – С. 4.
Gay, C. F. Performance advantages of two-axis tracking for large flat-plate photovoltaic energy systems / C. F. Gay, J. W. Yerkes, J. H. Wilson // Conf. Rec. IEEE Photovoltaic Spec. Conf 16. − 1982.
Капля, Е. В. Автоматическая система ориентации солнечной батареи в условиях переменной освещенности / Е. В. Капля // Известия ВолгГТУ. – 2009.– №8(56) – С. 88.
UST [Электронный ресурс]. – Режим доступа: http://ust.su/solar/media/section-inner79/3032
NASA Surface meteorology and Solar Energy [Electronic resource]. – Access mode: https://eosweb.larc.nasa.gov/cgi-bin/sse/grid.cgi?uid=3030
Shyniakov, Yu. A., Shuryhyn, Yu. A. & Arkatova, O. E. (2010). Povysheniye energeticheskoy effektivnosti avtonomnykh fotoelektricheskikh energeticheskikh ustanovok [Increasing the energy efficiency of autonomous photoelectric power plants]. Elektronika. Izmeritelnaya Tekhnika. Radiotekhnika i Svyaz. Doklady TUSURa. – Electronics, measurement equipment, radio engineering and communications. Proceedings of TUSUR University, 2 (22), 2, 102. [in Russian].
Popel, O. S., Fryd, S. E. & Alvares, H. M. (1986). K raschetu postupleniya solnechnoy radiatsii na zemnuyu poverkhnost [To the calculation of solar radiation input to the earth's surface]. Geliotechnika, 1, 56. [in Russian].
Plekhanov, S. Y. & Naumov, A. V. Otsenka vozmozhnostey rosta proizvodstva solnechnykh elementov na osnove CdTe. CIGS i GaAs/Ge v period 2010-2025 gg. [Assessment of the possibilities of growth in the production of solar cells based on CdTe, CIGS and GaAs/Ge in the period 2010-2025]. Retrieved from AEnergy.ru [in Russian].
Naumov, A. V. & Plekhanov, S. Y. (2013). Razvitiye solnechnoy energetiki na osnove tonkoplenochnykh CIGS-elementov [Development of solar energy based on thin-film CIGS-elements]. Enerhyia Ekonomyka Tekhnyka Ekolohyia, 7, p. 14. [in Russian].
Kuznetsov F. A. & Reznychenko M. F. (2008). Kremnyi Dlia Solnechnoi Enerhetyky [Silicon for solar energy]. Materyaly Elektronnoi Tekhnyky – Materials of Electronics Engineering, 4, p. 4. [in Russian].
Gay C. F., Yerkes J. W. & Wilson J. H. (1982). Performance advantages of two-axis tracking for large flat-plate photovoltaic energy systems. Conf. Rec. IEEE Photovoltaic Spec. Conf. 16.
Kaplia, E. V. (2009). Avtomaticheskaya sistema oriyentatsii solnechnoy batarei v usloviyakh peremennoy osveshchennosti [Automatic orientation system of the solar battery under variable illumination conditions]. Izvestiya VolgGTU, 8(56), p. 88. [in Russian].
UST. http://ust.su/solar/media/section-inner79/3032.
NASA Surface meteorology and Solar Energy. Retrieved from https://eosweb.larc.nasa.gov/cgi-bin/sse/grid.cgi?uid=3030.